Copied to
clipboard

G = C23.2M4(2)  order 128 = 27

2nd non-split extension by C23 of M4(2) acting via M4(2)/C4=C4

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C23.2M4(2), C22⋊C4⋊C8, C2.2C2≀C4, C23⋊C8.2C2, (C23×C4).4C4, C23.1(C2×C8), (C22×C4).7D4, C24.17(C2×C4), C23.8Q8.1C2, C22.41(C23⋊C4), C22.19(C22⋊C8), C2.2(C23.D4), C23.153(C22⋊C4), C22.8(C4.10D4), C2.7(C22.M4(2)), (C2×C22⋊C4).6C4, (C2×C22⋊C4).3C22, SmallGroup(128,58)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.2M4(2)
C1C2C22C23C22×C4C2×C22⋊C4C23.8Q8 — C23.2M4(2)
C1C2C22C23 — C23.2M4(2)
C1C22C23C2×C22⋊C4 — C23.2M4(2)
C1C22C23C2×C22⋊C4 — C23.2M4(2)

Generators and relations for C23.2M4(2)
 G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=b, dad-1=ab=ba, eae-1=ac=ca, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=abcd5 >

Subgroups: 216 in 79 conjugacy classes, 22 normal (20 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C23⋊C8, C23.8Q8, C23.2M4(2)
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), C22⋊C8, C23⋊C4, C4.10D4, C22.M4(2), C2≀C4, C23.D4, C23.2M4(2)

Character table of C23.2M4(2)

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E8F8G8H
 size 11112244444444448888888888
ρ111111111111111111111111111    trivial
ρ2111111111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ311111111-111-11-1-11-1-1-11-111-1-11    linear of order 2
ρ411111111-111-11-1-11-1-11-11-1-111-1    linear of order 2
ρ511111111-1-1-1-1-1-1-1-111i-iiii-i-i-i    linear of order 4
ρ611111111-1-1-1-1-1-1-1-111-ii-i-i-iiii    linear of order 4
ρ7111111111-1-11-111-1-1-1-i-i-iiiii-i    linear of order 4
ρ8111111111-1-11-111-1-1-1iii-i-i-i-ii    linear of order 4
ρ91-11-1-111-1-i-ii-i-iiii1-1ζ85ζ83ζ8ζ85ζ8ζ87ζ83ζ87    linear of order 8
ρ101-11-1-111-1-i-ii-i-iiii1-1ζ8ζ87ζ85ζ8ζ85ζ83ζ87ζ83    linear of order 8
ρ111-11-1-111-1-ii-i-iiii-i-11ζ87ζ85ζ83ζ83ζ87ζ85ζ8ζ8    linear of order 8
ρ121-11-1-111-1-ii-i-iiii-i-11ζ83ζ8ζ87ζ87ζ83ζ8ζ85ζ85    linear of order 8
ρ131-11-1-111-1ii-iii-i-i-i1-1ζ83ζ85ζ87ζ83ζ87ζ8ζ85ζ8    linear of order 8
ρ141-11-1-111-1i-iii-i-i-ii-11ζ8ζ83ζ85ζ85ζ8ζ83ζ87ζ87    linear of order 8
ρ151-11-1-111-1ii-iii-i-i-i1-1ζ87ζ8ζ83ζ87ζ83ζ85ζ8ζ85    linear of order 8
ρ161-11-1-111-1i-iii-i-i-ii-11ζ85ζ87ζ8ζ8ζ85ζ87ζ83ζ83    linear of order 8
ρ17222222-2-202-20-20020000000000    orthogonal lifted from D4
ρ18222222-2-20-220200-20000000000    orthogonal lifted from D4
ρ192-22-2-22-220-2i-2i02i002i0000000000    complex lifted from M4(2)
ρ202-22-2-22-2202i2i0-2i00-2i0000000000    complex lifted from M4(2)
ρ214-4-440000-20020-2200000000000    orthogonal lifted from C2≀C4
ρ224-4-440000200-202-200000000000    orthogonal lifted from C2≀C4
ρ234444-4-400000000000000000000    orthogonal lifted from C23⋊C4
ρ244-44-44-400000000000000000000    symplectic lifted from C4.10D4, Schur index 2
ρ2544-4-400002i00-2i0-2i2i00000000000    complex lifted from C23.D4
ρ2644-4-40000-2i002i02i-2i00000000000    complex lifted from C23.D4

Smallest permutation representation of C23.2M4(2)
On 32 points
Generators in S32
(1 30)(2 31)(3 19)(4 20)(5 26)(6 27)(7 23)(8 24)(9 28)(10 29)(11 17)(12 18)(13 32)(14 25)(15 21)(16 22)
(2 12)(4 14)(6 16)(8 10)(18 31)(20 25)(22 27)(24 29)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 30)(18 31)(19 32)(20 25)(21 26)(22 27)(23 28)(24 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 15)(2 18 12 31)(3 7)(4 20 14 25)(5 11)(6 22 16 27)(8 24 10 29)(9 13)(17 21)(19 28)(23 32)(26 30)

G:=sub<Sym(32)| (1,30)(2,31)(3,19)(4,20)(5,26)(6,27)(7,23)(8,24)(9,28)(10,29)(11,17)(12,18)(13,32)(14,25)(15,21)(16,22), (2,12)(4,14)(6,16)(8,10)(18,31)(20,25)(22,27)(24,29), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,18,12,31)(3,7)(4,20,14,25)(5,11)(6,22,16,27)(8,24,10,29)(9,13)(17,21)(19,28)(23,32)(26,30)>;

G:=Group( (1,30)(2,31)(3,19)(4,20)(5,26)(6,27)(7,23)(8,24)(9,28)(10,29)(11,17)(12,18)(13,32)(14,25)(15,21)(16,22), (2,12)(4,14)(6,16)(8,10)(18,31)(20,25)(22,27)(24,29), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,18,12,31)(3,7)(4,20,14,25)(5,11)(6,22,16,27)(8,24,10,29)(9,13)(17,21)(19,28)(23,32)(26,30) );

G=PermutationGroup([[(1,30),(2,31),(3,19),(4,20),(5,26),(6,27),(7,23),(8,24),(9,28),(10,29),(11,17),(12,18),(13,32),(14,25),(15,21),(16,22)], [(2,12),(4,14),(6,16),(8,10),(18,31),(20,25),(22,27),(24,29)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,30),(18,31),(19,32),(20,25),(21,26),(22,27),(23,28),(24,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,15),(2,18,12,31),(3,7),(4,20,14,25),(5,11),(6,22,16,27),(8,24,10,29),(9,13),(17,21),(19,28),(23,32),(26,30)]])

Matrix representation of C23.2M4(2) in GL6(𝔽17)

100000
010000
00161500
000100
00001615
000001
,
100000
010000
001000
000100
0000160
0000016
,
100000
010000
0016000
0001600
0000160
0000016
,
2160000
8150000
000010
00001616
001200
0001600
,
1600000
1310000
001000
00161600
000012
00001616

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,15,1,0,0,0,0,0,0,16,0,0,0,0,0,15,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[2,8,0,0,0,0,16,15,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,16,0,0,1,16,0,0,0,0,0,16,0,0],[16,13,0,0,0,0,0,1,0,0,0,0,0,0,1,16,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,2,16] >;

C23.2M4(2) in GAP, Magma, Sage, TeX

C_2^3._2M_4(2)
% in TeX

G:=Group("C2^3.2M4(2)");
// GroupNames label

G:=SmallGroup(128,58);
// by ID

G=gap.SmallGroup(128,58);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,120,422,723,346,521,136,2804]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=b,d*a*d^-1=a*b=b*a,e*a*e^-1=a*c=c*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b*c*d^5>;
// generators/relations

Export

Character table of C23.2M4(2) in TeX

׿
×
𝔽