p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.2M4(2), C22⋊C4⋊C8, C2.2C2≀C4, C23⋊C8.2C2, (C23×C4).4C4, C23.1(C2×C8), (C22×C4).7D4, C24.17(C2×C4), C23.8Q8.1C2, C22.41(C23⋊C4), C22.19(C22⋊C8), C2.2(C23.D4), C23.153(C22⋊C4), C22.8(C4.10D4), C2.7(C22.M4(2)), (C2×C22⋊C4).6C4, (C2×C22⋊C4).3C22, SmallGroup(128,58)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C23 — C2×C22⋊C4 — C23.2M4(2) |
C1 — C22 — C23 — C2×C22⋊C4 — C23.2M4(2) |
Generators and relations for C23.2M4(2)
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=b, dad-1=ab=ba, eae-1=ac=ca, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=abcd5 >
Subgroups: 216 in 79 conjugacy classes, 22 normal (20 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C23⋊C8, C23.8Q8, C23.2M4(2)
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), C22⋊C8, C23⋊C4, C4.10D4, C22.M4(2), C2≀C4, C23.D4, C23.2M4(2)
Character table of C23.2M4(2)
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | i | i | -i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | -i | -i | i | i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | -i | -i | i | i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | i | i | i | -i | -i | -i | -i | i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | -i | -i | i | i | i | 1 | -1 | ζ85 | ζ83 | ζ8 | ζ85 | ζ8 | ζ87 | ζ83 | ζ87 | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | -i | -i | i | i | i | 1 | -1 | ζ8 | ζ87 | ζ85 | ζ8 | ζ85 | ζ83 | ζ87 | ζ83 | linear of order 8 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | -i | -i | i | i | i | -i | -1 | 1 | ζ87 | ζ85 | ζ83 | ζ83 | ζ87 | ζ85 | ζ8 | ζ8 | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | -i | -i | i | i | i | -i | -1 | 1 | ζ83 | ζ8 | ζ87 | ζ87 | ζ83 | ζ8 | ζ85 | ζ85 | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | i | i | -i | -i | -i | 1 | -1 | ζ83 | ζ85 | ζ87 | ζ83 | ζ87 | ζ8 | ζ85 | ζ8 | linear of order 8 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | i | i | -i | -i | -i | i | -1 | 1 | ζ8 | ζ83 | ζ85 | ζ85 | ζ8 | ζ83 | ζ87 | ζ87 | linear of order 8 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | i | i | -i | -i | -i | 1 | -1 | ζ87 | ζ8 | ζ83 | ζ87 | ζ83 | ζ85 | ζ8 | ζ85 | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | i | i | -i | -i | -i | i | -1 | 1 | ζ85 | ζ87 | ζ8 | ζ8 | ζ85 | ζ87 | ζ83 | ζ83 | linear of order 8 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2i | -2i | 0 | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2i | 2i | 0 | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ23 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ24 | 4 | -4 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
(1 30)(2 31)(3 19)(4 20)(5 26)(6 27)(7 23)(8 24)(9 28)(10 29)(11 17)(12 18)(13 32)(14 25)(15 21)(16 22)
(2 12)(4 14)(6 16)(8 10)(18 31)(20 25)(22 27)(24 29)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 30)(18 31)(19 32)(20 25)(21 26)(22 27)(23 28)(24 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 15)(2 18 12 31)(3 7)(4 20 14 25)(5 11)(6 22 16 27)(8 24 10 29)(9 13)(17 21)(19 28)(23 32)(26 30)
G:=sub<Sym(32)| (1,30)(2,31)(3,19)(4,20)(5,26)(6,27)(7,23)(8,24)(9,28)(10,29)(11,17)(12,18)(13,32)(14,25)(15,21)(16,22), (2,12)(4,14)(6,16)(8,10)(18,31)(20,25)(22,27)(24,29), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,18,12,31)(3,7)(4,20,14,25)(5,11)(6,22,16,27)(8,24,10,29)(9,13)(17,21)(19,28)(23,32)(26,30)>;
G:=Group( (1,30)(2,31)(3,19)(4,20)(5,26)(6,27)(7,23)(8,24)(9,28)(10,29)(11,17)(12,18)(13,32)(14,25)(15,21)(16,22), (2,12)(4,14)(6,16)(8,10)(18,31)(20,25)(22,27)(24,29), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,18,12,31)(3,7)(4,20,14,25)(5,11)(6,22,16,27)(8,24,10,29)(9,13)(17,21)(19,28)(23,32)(26,30) );
G=PermutationGroup([[(1,30),(2,31),(3,19),(4,20),(5,26),(6,27),(7,23),(8,24),(9,28),(10,29),(11,17),(12,18),(13,32),(14,25),(15,21),(16,22)], [(2,12),(4,14),(6,16),(8,10),(18,31),(20,25),(22,27),(24,29)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,30),(18,31),(19,32),(20,25),(21,26),(22,27),(23,28),(24,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,15),(2,18,12,31),(3,7),(4,20,14,25),(5,11),(6,22,16,27),(8,24,10,29),(9,13),(17,21),(19,28),(23,32),(26,30)]])
Matrix representation of C23.2M4(2) ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
2 | 16 | 0 | 0 | 0 | 0 |
8 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 16 | 16 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
13 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 16 | 16 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,15,1,0,0,0,0,0,0,16,0,0,0,0,0,15,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[2,8,0,0,0,0,16,15,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,16,0,0,1,16,0,0,0,0,0,16,0,0],[16,13,0,0,0,0,0,1,0,0,0,0,0,0,1,16,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,2,16] >;
C23.2M4(2) in GAP, Magma, Sage, TeX
C_2^3._2M_4(2)
% in TeX
G:=Group("C2^3.2M4(2)");
// GroupNames label
G:=SmallGroup(128,58);
// by ID
G=gap.SmallGroup(128,58);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,120,422,723,346,521,136,2804]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=b,d*a*d^-1=a*b=b*a,e*a*e^-1=a*c=c*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b*c*d^5>;
// generators/relations
Export